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Abstract
The Rashba effect in several surface systems, Au(111), Au(110), Ag(111), Sb(111) and
Si(111)–Bi, is studied by means of first-principles relativistic density-functional calculations.
The importance of the asymmetric behavior around the surface atom is emphasized as a crucial
factor to determine the magnitude of Rashba spin splitting in addition to the size of the
spin–orbit coupling. The Rashba effect at the Brillouin-zone boundary is generally described
with time-reversal symmetry. Distinctive features in the spin splitting and spin direction for a
two-dimensional hexagonal system are discussed with the use of symmetry in the double group
of k.

1. Introduction

The Rashba effect has originally been studied as a spin splitting
phenomenon, where a free electron of spin s moves with
momentum h̄k under an electric field along the z direction [1].
The Rashba Hamiltonian is then given as

HR = αR
(
ẑ × h̄k

) · s. (1)

The corresponding eigenstate has spin quantized perpendicular
to the field and the wavevector k on the xy plane. The
Rashba effect in two-dimensional (2D) electron-gas systems
has been extensively investigated and its possible applications
to spin generation and control are highly expected for the next-
generation spintronics devices.

The microscopic origin of the Rashba effect is known to
be spin–orbit coupling (SOC), which is one of the relativistic
effects and can be given in Ryd atomic units as

HSOC = 2

c2
(∇V × p) · s, (2)

where V is a crystal potential, p is a momentum operator and
c is the velocity of light (c−2 = 1.33 × 10−5). It is easily
seen that SOC can be reduced to the Rashba Hamiltonian
for a free-electron system with an external field. In the case
of a spherically symmetric potential, a much more familiar

expression can be obtained as

HSOC = 2

c2

1

r

dV (r)

dr
l · s = ζ̂ l · s, (3)

which is the direct representation of a coupling between spin
and orbital (l) angular momentum operators. As discussed
below, the spherically symmetric term around each atom is
usually relevant because of the dominant contribution from a
nucleus charge to the potential gradient.

An SOC-origin spin splitting may often be seen in the
case of a non-centrosymmetric system with large SOC. For
bulk states it is called the Dresselhaus effect [2] while for
surface states it is also known as the Rashba effect. A
Rashba spin splitting has actually been observed by the angle-
resolved photoemission spectroscopy (ARPES) technique for
heavy-element surfaces such as Au(111) [3–5]. Recently, the
Rashba effect has been studied for many surface systems both
experimentally [6–11] and theoretically [12–16].

In this study, the surface states for some surface systems,
Au(111), Ag(111) and Sb(111), are investigated by first-
principles electronic-structure calculations with the inclusion
of SOC. By comparing the Rashba splitting for the different
surface systems, it is found that asymmetric features of the
surface state in the nucleus region at the surface atom are
crucial to determine the magnitude of the splitting in addition
to the size of the SOC. To study a variation in the Rashba effect
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Figure 1. Electronic band structure of the Au(111) 23-layer slab
model calculated without spin–orbit coupling along the
two-dimensional hexagonal Brillouin zone (inset). The Fermi energy
is set to the origin of energy.

at a surface, the electronic structure of the Au(110) surface
is also calculated by assuming (1 × 1) and (2 × 1) surface
structures. Calculated results for Au(110) are compared with
an ARPES experiment [17, 18]. An adsorbed surface system is
also investigated for Si(111)-(

√
3×√

3)–Bi. In the Si(111)–Bi
system, Rashba-type spin splitting is obtained not only at the
zone center (�̄) but also at the high-symmetry k points (M̄ and
K̄ ) on the 2D Brillouin-zone (BZ) boundary, being consistent
with the results of a recent ARPES measurement [19]. General
aspects of the Rashba spin splitting at the zone boundary and
the resultant spin direction are discussed in detail.

2. Methods and models

Our calculations are based on the first-principles density-
functional approach. One-electron Kohn–Sham equations are
solved with the all-electron full-potential linear augmented-
plane-wave (FLAPW) method and SOC is included as a second
variation in self-consistent-field iterations.

In order to simulate surface systems, a repeated slab
model is adopted in the present calculations. Since the size
of the Rashba splitting is often very small, like of the order of
meV, the thickness of the slab model used should be checked
to eliminate the interaction between the surface states on
both sides. It is known for semiconductor surfaces that the
dangling bonds on the back side can be terminated by putting

Figure 2. Electronic band structure of Au(111) calculated with
spin–orbit coupling around �̄. Boundaries plotted are
(1/15, 1/15)(2π/a) on �̄ K̄ and (1/10, 0)(2π/a) toward �̄M̄ , being
1/5 the size of the full zone. The Fermi energy is set to the origin of
energy.

hydrogen atoms there. However, no such termination scheme
is available for metallic surfaces. This may be because a
dangling bond to be terminated is not clearly formed in metallic
systems. We have tested the band splitting due to the surface-
state interaction by changing the slab thickness for Au(111),
Au(110) and Ag(111) and have found that a 23-layer thickness
is sufficient to get the undesired splitting to less than 10 meV.
For Sb(111), a 12-layer model is enough to get the same
accuracy. As for the Si(111)-(

√
3 × √

3)–Bi surface system,
a 12-layer slab with hydrogen termination is used. Possible
adsorption sites of Bi are known to be T4 and H3 on Si(111) and
the former is believed to be more stable than the latter [20–23].
We first have optimized the structure of Si(111)-(

√
3×√

3)–Bi
for both T4 and H3 adsorption sites, compared the total energy
between them and confirmed the relative stability of the T4 site
(see figure 9). This stability can be understood by the fact that
adsorbed Bi may form chemical bonds with four neighboring
Si atoms at the T4 site rather than with three Si atoms at the
H3 site.

3. Results and discussion

3.1. Au(111), Ag(111) and Sb(111)

Figure 1 shows the electronic band structure of the Au(111)
23-layer slab model calculated without SOC along the 2D BZ
lines. The bands are made mostly by folding the bulk ones
between � and L along the [111] direction of the fcc BZ. Near
the Fermi energy, a nearly-free-electron (NFE) parabolic band
appears around the �̄ point of the 2D Brillouin zone. This
NFE band can be attributed to a surface state (SS) situated
inside the bulk bandgap around �̄. The Ag(111) surface reveals
similar SS with smaller binding energy to Au(111). With the
inclusion of SOC, the SS band in Au(111) shows significant
band splitting, as shown in figure 2, being in good agreement
with the ARPES experiments [3–5]. The band splitting is
confirmed as the spin splitting of the Rashba origin by scaling
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Figure 3. Electronic band structure of Sb(111) calculated with
spin–orbit coupling around �̄. Boundaries plotted are
(1/15, 1/15)(2π/a) on �̄ K̄ and (1/10, 0)(2π/a) toward �̄M̄ , being
1/5 the size of the full zone. The Fermi energy is set to the origin of
energy.

artificially the magnitude of the SOC parameter ζl given in
equation (4) and by investigating the spin directions. On the
other hand, Ag(111) shows no clear Rashba splitting larger
than that by the SS–SS interaction (∼10 meV). The size of
the SOC in Ag is about one-third of that in Au. The Ag(111)
surface even with artificially magnified SOC comparable to
Au shows no Rashba splitting, implying that the Rashba effect
comes not only from the strength of SOC.

Before discussing the microscopic mechanism of the
Rashba effect, results of band-structure calculations for the
Sb(111) surface are presented in figure 3 since Sb has an
intermediate size of SOC between Ag and Au. As for Sb(111),
Rashba spin splitting is also found around �̄ with almost the
equivalent size of the splitting to Au(111). To compare the
Rashba effect in Au(111), Ag(111) and Sb(111) surfaces, the
size of the spin splitting and SOC are listed in table 1. Since
the Rashba splitting appears only around �̄, its measure is
represented as the distance between the bottoms of the split
bands around �̄. The magnitude of SOC is evaluated with
normalized radial functions Rl(r) inside the muffin-tin sphere
as

ζl =
∫ rMT

0
ζ̂ R2

l (r)r
2 dr. (4)

Let us discuss the origin of the Rashba effect at a surface.
The SOC Hamiltonian (2) can be divided into two terms
according to the momentum component, surface parallel and
surface perpendicular, as

HSOC = 2

c2

[(∇V × p‖
) · s + (∇V × p⊥) · s

]
(5)

and the surface-parallel part can be regarded as the Rashba term
HR. The second term, including the surface-perpendicular

Figure 4. The integrand of equation (7) as a function of z along the
[111] direction. The surface atom site is taken at the origin.

Table 1. Summary of the Rashba splitting �kR, spin–orbit coupling
parameter ζl and orbital angular momentum components of the
surface states at � in Au(111), Ag(111) and Sb(111). The Rashba
splitting is measured as the distance between the bottom of the split
bands around �̄.

71Au(111) 47Ag(111) 51Sb(111)

�kR �̄M̄ 27.8 — 20.5

(10−3 Å
−1

) �̄ K̄ 27.8 — 21.2

ζl p 6.34 1.90 2.27
(eV) d 0.79 0.27 0.52

Component s 1.3 0.7 3.3
(%) p 4.7 4.6 9.8

d 2.5 0.8 —

momentum component, should be irrelevant to the spin
splitting behavior in the 2D band structure. A more general
description of the Rashba effect at a surface will be given
elsewhere [24]. By assuming a 2D NFE SS with k‖ = (kx , ky)

like
ψ

k‖
SS(r) = ei(kx x+ky y)φ(z), (6)

the Rashba splitting is determined as an integral of the potential
gradient along the z direction times the z dependence of the
surface wavefunction squared as

�εR = 〈ψk‖
SS |HR|ψk‖

SS〉
= ∣∣k‖

∣∣
∫

dr
2

c2

∂V

∂z

∣
∣∣ψ

k‖
SS

∣
∣∣
2
. (7)

Figure 4 shows the integrand of equation (7) around the
surface atom as a function of z calculated for Au(111). It
is found that everything happens within one Bohr around the
surface atom, where the antisymmetric Coulomb term from
the nucleus is dominant in ∇z V . Such a localized nature of
SOC on the Rashba effect has been already pointed out by
Bihlmayer et al [15]. This means that the asymmetric feature in
the z dependence of the surface wavefunction squared |φ(z)|2
determines the magnitude of the integral in equation (7). The
surface wavefunction squared along the z direction is depicted
in figure 5 for Au(111), Ag(111) and Sb(111). The asymmetric
feature around the surface atom is clearly seen in Au(111) and
Sb(111) but is rather small in Ag(111), as expected. It becomes
apparent by inspecting the components of the wavefunction
because, as shown in table 1, the asymmetric nature of SS in
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Figure 5. The wavefunction squared of the surface state at �̄ in
(a) Au(111), (b) Ag(111) and (c) Sb(111) as a function of z along the
[111] direction. The surface atom site is taken at the origin.

Au(111) and Sb(111) originates in the on-site hybridization of
the spd and sp orbitals, respectively, at the surface, while SS in
Ag(111) is composed predominantly of the p orbital, resulting
in a less asymmetric feature. Such on-site hybridization
between the orbitals with different parity may be possible by
breaking the inversion symmetry at the surface. The d states
in Ag are apparently deep and less in SS while those in Au are
rather shallow. This different behavior in the d band position
is known to come mainly from another relativistic effect, the
mass–velocity term.

3.2. Au(110)

Recently, Higashiguchi et al have reported an ARPES
measurement for Au(110) surface and found an SS-origin
dispersion around Ȳ without clear Rashba splitting [17, 18].
It is well known that Au(110) undergoes (2 × 1) missing-row
surface reconstruction. The surface reconstruction is expected
to affect the nature of SS significantly and the resultant Rashba
effect may be strongly changed.

Our first-principles electronic-structure calculation for the
Au(110) surface with (1 × 1) structure indicates the existence

of an NFE-like SS around Ȳ about 0.5 eV below the Fermi
energy. Anisotropic dispersion in the calculated SS band and
the resulting elliptic Fermi surface around Ȳ is quite consistent
with the ARPES results [17, 18]. With the existence of (2 × 1)
missing-row surface reconstruction, an NFE-like SS appears
around �̄ just above the Fermi energy. The wavefunctions of
SS in Au(110) (1 × 1) and (2 × 1) are depicted in figure 6,
together with that in Au(111). It is clearly seen in figure 6
that the surface-normal p orbitals are dominant in SS on all the
layers of Au(111). On the other hand, for Au(110) (1 × 1),
SS on the outermost surface layer is composed mostly of the
surface-parallel p orbitals while the surface-normal p orbitals
are found on the second layer. This different character in SS
may explain why the band bottom is located at �̄ in Au(111)
and at Ȳ in Au(110) (1 × 1). In the case of Au(110) (2 × 1),
the band bottom of SS moves to �̄ by Brillouin-zone folding.
Furthermore, SS has the strongest amplitude on the outermost
layer in Au(111), decaying into the bulk exponentially, but
the second layer has almost the same amplitude of SS as the
outermost surface layer in Au(110) (1 × 1) and (2 × 1).

Figure 7 shows the energy band structure of SS in Au(110)
(1 × 1) calculated with SOC. Rashba spin splitting can be
seen around Ȳ . It is quite interesting that the spin splitting is
definitely larger for wavevectors from Ȳ to �̄ ([001] direction)
than for those from Ȳ to S̄ ([11̄0] direction). This anisotropic
feature in the Rashba splitting may be attributed to differences
in asymmetric behavior of the corresponding SS around atomic
sites near the surface.

Let us consider Rashba splitting generally at the zone
boundary. The SOC-origin spin splitting behaviors described
solely by the time-reversal symmetry argument may be defined
as the proper Rashba effect. The time-reversal operation �
reverses the wavevector and spin simultaneously and the Bloch
eigenstate with the time-reversal symmetry is invariant under
the operation as

�ε(k, s) = ε(−k,−s) = ε(k, s), (8)

where −s denotes simply the reverse spin state to s. The face
center of the zone boundary C̄ like X̄ and Ȳ in the 2D square
BZ and M̄ in the 2D hexagonal BZ is given as

C̄ = Ḡ

2
, (9)

where Ḡ is a 2D reciprocal lattice vector, and the time-reversal
operation on a state around C̄ results in

�ε(k + C̄, s) = ε(−k − C̄,−s)

= ε(−k − C̄ + Ḡ,−s)

= ε(−k + C̄,−s) = ε(k + C̄, s), (10)

by using the Bloch theorem ε(k + Ḡ, s) = ε(k, s) in the
second equality. It is, therefore, concluded that the proper
Rashba spin splitting may take place around the face center
of the zone boundary in addition to the zone center (�̄) with
the time-reversal symmetry. Note that K̄ in the 2D hexagonal
BZ is another zone-boundary high-symmetry point but does
definitely not meet the condition described above, as discussed
in the next section.
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Figure 6. Calculated wavefunction squared of the surface state |ψk‖
SS |2 in (a) Au(111) at �̄, (b) Au(110) (1 × 1) at Ȳ and (c) Au(110) (2 × 1) at

�̄. The surface-normal is taken along the vertical axis and the surface-parallel direction [110] in (111) and [11̄2] in (110) is along the
horizontal axis. The outermost surface layer is located at the origin of the vertical axis. The interval of the contour plot is in 0.0015e units.

Figure 7. Electronic band structure around Ȳ in Au(110) (1 × 1)
calculated with spin–orbit coupling. The inset is the corresponding
two-dimensional Brillouin zone. Boundaries drawn are
((33/100)(2π/b), 0) on Ȳ �̄ and ((1/2)(2π/b), (3/25)(2π/a)) on
Ȳ S̄, where a and b = √

2a are the lattice constants of Au(110)
(1 × 1). The Fermi energy is set to the origin of energy.

Figure 8 shows the band structure around �̄ calculated
with SOC for the Au(110) surface with (2 × 1) missing-row
surface reconstruction. Anisotropic Rashba spin splitting is
again found with the same tendency as in Au(110) (1 × 1).
In this case, however, an SS with Rashba splitting is located
above the Fermi energy around �̄ and may not be observed by
the ARPES technique.

3.3. Si(111)-(
√

3 × √
3)–Bi

A surface system adsorbed with a heavy-element atom is quite
interesting for studying the Rashba effect since there might be

Figure 8. Electronic band structure around �̄ in Au(110) (2 × 1)
calculated with spin–orbit coupling. The inset is the corresponding
two-dimensional Brillouin zone. Boundaries drawn are
(0, (3/25)(2π/a), 0) on �̄ X̄ and ((33/100)(2π/b), 0) on �̄Ȳ , where
a and b = 2

√
2a are the lattice constants of Au(110) (2 × 1). The

Fermi energy is set to the origin of energy.

a possible variation in the system with large SOC. Along such
a line, Sakamoto et al have observed ARPES spectra for a Bi-
adsorbed Si(111) surface with (

√
3 × √

3) superstructure [19].
They have found Rashba-type splitting for SS not only around
�̄ and M̄ but also around K̄ in the 2D hexagonal BZ.
Concerning the surface structure of Si(111)-(

√
3 × √

3)–Bi
and related adsorbed surface systems, several experimental and
theoretical studies have already been reported [20–23] and the
adatom position is believed to be at the so-called T4 site (see
figure 9). The Rashba-type spin splitting around �̄, M̄ and K̄
has been first pointed out by Kinoshita et al [21] on the basis
of a symmetry consideration.

5
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Figure 9. Surface structure of clean Si(111). Small solid, small open
and large open circles denote three lateral positions of the double
layer named (Aa), (Bb) and (Cc), respectively. The sequence of the
double layers in bulk is Aa–Bb–Cc along the [111] direction. When
C is the surface layer, the site above (Bb) and (Aa) is called T4 and
H3, respectively. Thin and thick lines represent the hexagonal unit
cell of the (1 × 1) and (

√
3 × √

3) structure, respectively.

Figure 10. Two-dimensional Brillouin zone of the Si(111) surface.
Outer and inner hexagons denote the zone boundary of the (1 × 1)
and (

√
3 × √

3) structure, respectively.

The (1 × 1) and (
√

3 × √
3) surface structures of Si(111)

are shown in figure 9. The plane groups of the (1 × 1)
and (

√
3 × √

3) structures are p3m1 and p31m, respectively.
The difference in the groups comes from the fact whether
the mirror planes coincide with the principal axes or not.
The corresponding two-dimensional hexagonal Brillouin zones
are drawn in figure 10. The coordinates of M̄ and K̄ are
(1/2, 0)(2π/a) and (1/3, 1/3)(2π/a), respectively, in the 2D
hexagonal axes. Note that a wavevector from �̄ to K̄ is on the
mirror plane for (

√
3 × √

3) but out of the mirror plane for
(1 × 1).

Figure 11 shows the energy band structure of Si(111)-
(
√

3 × √
3)–Bi at the T4 site calculated with and without SOC.

Two bands situated inside the energy gaps in the case of no
SOC originate in the SS composed mainly of Bi-p and Si-s,
p near the surface and reveal Rashba-type spin splitting with
SOC. Since the samples experimentally used are n-type, where

Figure 11. Electronic band structure of Si(111)-(
√

3 × √
3)–Bi at T4

calculated (a) without and (b) with spin–orbit coupling. Numbers
(#161–164) attached to surface-state bands in (b) denote the band
indices.

the chemical potential is located near the conduction band
minimum, the SS bands inside the gaps may be observed as
occupied bands. In accordance with the ARPES result [19],
these two bands are degenerated at �̄, M̄ and K̄ . As mentioned
in the preceding section, the Rashba spin splitting around �̄
and M̄ can be interpreted solely by the time-reversal symmetry.
However, no such simple explanation may be possible for K̄ .
The group of k at K̄ is C3v and the irreducible representation
of SS at K̄ is found to be �1 without SOC and reduced to
doubly degenerate �4 by including SOC (see Table 6.5 3m
(C3v) of [25]). The double degeneracy of �4 can be considered
as of spin degeneracy because its single-group counterpart �1

is a one-dimensional representation with spin degeneracy. As
the wavevector is departed from K̄ in any direction, no spin
degeneracy should be expected since all the representations
are one-dimensional (see Table 6.5 m (C1h) of [25]), leading
to a Rashba-like spin splitting. This Rashba-like spin splitting
should be referred to as an improper Rashba effect in the sense
that it cannot be given by the time-reversal symmetry but by
the consequence of the double-group symmetry.

The spin expectation values 〈s〉 of the four split SS bands
(#161, 162, 163 and 164) are depicted in figure 12 along the
irreducible BZ. It is clearly shown that the spin direction of the
SOC-split bands is opposite to each other, mostly on the kx–
ky plane along all the irreducible BZ lines. It is remarkably
interesting to see that the spin direction rotates circularly like
vorticity ∇ × s ∝ k̂z around �̄ and K̄ but behaves non-
vortical around M̄ . Another interesting point to be noticed in
figure 12 is that the spins are oriented exactly on the xy plane
and perpendicular to the irreducible BZ boundaries for the
wavevectors on M̄–K̄ and �̄–K̄ but show a finite z component
〈sz〉 on �̄–M̄ . These spin behaviors may be closely related and
possibly explained by a symmetry argument with the group
of k as follows. There is a mirror symmetry operation, of
which the mirror plane includes the z axis, in the group of k
on M̄–K̄ and �̄–K̄ but no mirror symmetry on �̄–M̄ . With

6
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Figure 12. Calculated expectation values of spin angular momentum
operator 2〈sα〉 (α = x, y, z) for the surface-state bands with indices
(a) #161 (solid) and 162 (broken), and (b) 163 (solid) and 164
(broken) in Si(111)-(

√
3 × √

3)–Bi at T4 along the two-dimensional
hexagonal Brillouin zone. Red, blue and green denote the x , y and z
components, respectively.

(This figure is in colour only in the electronic version)

respect to the mirror operation, any in-mirror-plane component
of SOC, [∇V × p]α, is odd and the wavefunctions are either
odd or even. Thus, the matrix element of the in-mirror-plane
component becomes zero and the spin expectation value 〈sα〉
vanishes, as actually observed for M̄–K̄ and �̄–K̄ in figure 12.
Without the mirror symmetry, no such restrictions on the spin
direction may be imposed, as seen for �̄–M̄ in figure 12.
Around �̄ and K̄ there are six k lines with the mirror symmetry
like �̄–K̄ and K̄ –M̄ . There are, however, only two k lines with
a mirror around M̄ . Assuming that the spin expectation value
〈s〉 is continuous and varies slowly in the k space without band
crossings, the calculated spin distributions seem to be quite
reasonable within the conditions required by the time-reversal
and mirror symmetries.

4. Summary

The Rashba effect in several surface systems is studied by
using first-principles electronic-structure calculations with the
inclusion of SOC. By comparing the Rashba splitting among
the Au(111), Ag(111) and Sb(111) systems, the asymmetric
behavior of SS along the surface-normal direction is crucial

to determine the size of the spin splitting in addition to the
magnitude of SOC. Rashba-split SS is seen below (above) the
Fermi energy in Au(110)-(1×1) (Au(110)-(2×1)). Anisotropic
spin splitting is found and may be attributed to an anisotropic
feature of SS. In Si(111)-(

√
3 × √

3)–Bi, the proper Rashba
spin splitting is obtained around �̄ and M̄ and the improper
Rashba spin splitting is around K̄ . The former can be realized
solely by the time-reversal symmetry and the latter may be
possibly explained by arguments on the basis of the double
group of k.
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